Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose.

نویسندگان

  • N W Ho
  • Z Chen
  • A P Brainard
چکیده

Xylose is one of the major fermentable sugars present in cellulosic biomass, second only to glucose. However, Saccharomyces spp., the best sugar-fermenting microorganisms, are not able to metabolize xylose. We developed recombinant plasmids that can transform Saccharomyces spp. into xylose-fermenting yeasts. These plasmids, designated pLNH31, -32, -33, and -34, are 2 microns-based high-copy-number yeast-E. coli shuttle plasmids. In addition to the geneticin resistance and ampicillin resistance genes that serve as dominant selectable markers, these plasmids also contain three xylose-metabolizing genes, a xylose reductase gene, a xylitol dehydrogenase gene (both from Pichia stipitis), and a xylulokinase gene (from Saccharomyces cerevisiae). These xylose-metabolizing genes were also fused to signals controlling gene expression from S. cerevisiae glycolytic genes. Transformation of Saccharomyces sp. strain 1400 with each of these plasmids resulted in the conversion of strain 1400 from a non-xylose-metabolizing yeast to a xylose-metabolizing yeast that can effectively ferment xylose to ethanol and also effectively utilizes xylose for aerobic growth. Furthermore, the resulting recombinant yeasts also have additional extraordinary properties. For example, the synthesis of the xylose-metabolizing enzymes directed by the cloned genes in these recombinant yeasts does not require the presence of xylose for induction, nor is the synthesis repressed by the presence of glucose in the medium. These properties make the recombinant yeasts able to efficiently ferment xylose to ethanol and also able to efficiently coferment glucose and xylose present in the same medium to ethanol simultaneously.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation.

The use of plant biomass for biofuel production will require efficient utilization of the sugars in lignocellulose, primarily glucose and xylose. However, strains of Saccharomyces cerevisiae presently used in bioethanol production ferment glucose but not xylose. Yeasts engineered to ferment xylose do so slowly, and cannot utilize xylose until glucose is completely consumed. To overcome these bo...

متن کامل

Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose.

Recent studies have proven ethanol to be the ideal liquid fuel for transportation, and renewable lignocellulosic materials to be the attractive feedstocks for ethanol fuel production by fermentation. The major fermentable sugars from hydrolysis of most cellulosic biomass are D-glucose and D-xylose. The naturally occurring Saccharomyces yeasts that are used by industry to produce ethanol from st...

متن کامل

DNA microarray analysis of the expression of the genes encoding the major enzymes in ethanol production during glucose and xylose co-fermentation by metabolically engineered Saccharomyces yeast

Lignocellulosic biomass, which contains large amounts of glucose and xylose, is the new ideal feedstock for ethanol production used as renewable liquid fuel for transportation. The naturally occurring Saccharomyces yeasts traditionally used for industrial ethanol production are unable to ferment xylose. We have successfully developed genetically engineered Saccharomyces yeasts that can effectiv...

متن کامل

Enhancement of ethanol production from green liquor–ethanol-pretreated sugarcane bagasse by glucose–xylose cofermentation at high solid loadings with mixed Saccharomyces cerevisiae strains

BACKGROUND Efficient cofermentation of glucose and xylose is necessary for economically feasible bioethanol production from lignocellulosic biomass. Here, we demonstrate pretreatment of sugarcane bagasse (SCB) with green liquor (GL) combined with ethanol (GL-Ethanol) by adding different GL amounts. The common Saccharomyces cerevisiae (CSC) and thermophilic S. cerevisiae (TSC) strains were used ...

متن کامل

Fermentation of corn ®bre sugars by an engineered xylose utilizing Saccharomyces yeast strain

The ability of a recombinant Saccharomyces yeast strain to ferment the sugars glucose, xylose, arabinose and galactose which are the predominant monosaccharides found in corn ®bre hydrolysates has been examined. Saccharomyces strain 1400 (pLNH32) was genetically engineered to ferment xylose by expressing genes encoding a xylose reductase, a xylitol dehydrogenase and a xylulose kinase. The recom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 64 5  شماره 

صفحات  -

تاریخ انتشار 1998